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Abstract. In this paper first- and second-order optimality conditions for strong local minimum
are presented for optimal control problems with pure state set-inclusion constraints. The first-order
condition is of Pontryagin type, while the second-order condition is of the form of an accessory
problem associated with the strong local minimality. This latter condition contains an extra term
reflecting the presence of the pure state constraints.
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1. Introduction

Consider the optimal control problem

��� Minimize��x�0��x�1��subject to

ẋ�t�=f �t�x�t��u�t�� for a.e. t∈ 	0�1
� (1.1)

b�x�0��x�1��=0� (1.2)

k�t�x�t��∈S for t∈ 	0�1
� (1.3)

u�t�∈U for a.e. t∈ 	0�1
� (1.4)

where x � 	0�1
→�n is absolutely continuous, u�	0�1
→�m is measurable,
S is a convex subsets of�� with nonempty interior, and U is an arbitrary subset of
�m.
If a pair �x�u� satisfies (1.1)—(1.4), then it is said to be an admissible process

for �.
The study of second-order weak local optimality conditions for the problem

� in [10] – [11] had revealed that the presence of the pure-state constraints (1.3)



364 ZSOLT PÁLES AND VERA ZEIDAN

produces an extra term evoking the following notions. Namely, the set of second-
order admissible variations and its support functional, and the critical cone.
However, for the case when the pure state-constraint is absent, Dubovitskii and

Milyutin had introduced in [1] a time transformation that transforms the problem
� into a problem ���� with the property that the optimality in � yields the
optimality in ���� of the transformed solution. Furthermore, when the first-order
weak local optimality conditions are applied to ���� and then carefully analyzed,
one deduces the Pontryagin principle for the problem �.
The main task of this paper is to present not only first- but also second-order

optimality conditions for strong local minimum in � when the pure state con-
straints are present. The method we employ is a serious modification of the time
transformation provided in [1] (see also [3]).
The paper is divided as follows. The next section consists of listing the notions

and results from earlier papers and which are needed for this paper. The main result
of this paper is presented in section 3. An outline of the proof of the main result is
furnished also in Section 3. For some details of the proof see [12].

2. Notations and Terminology

First we recall from [4] some notions and notations concerning first- and second-
order differentiability properties of functions between normed spaces.
Let Z, Y be normed spaces, D be an open subset of Z and H �D→Y . We say

that H is strictly Fréchet differentiable at a point ẑ∈D if there exists a bounded
linear operator H ′�̂z� �Z→Y with the property that, for all �>0, there exists
�>0 such that

�H�z′�−H�z′′�−H ′�̂z��z′−z′′�����z′−z′′�
whenever z′ and z′′ satisfy �z′− ẑ�<� and �z′′− ẑ�<�. If the above inequality is
required only for z′′ = ẑ, then F is called Fréchet differentiable at ẑ.
If H is Fréchet differentiable at ẑ and d∈Z, then we say that H is twice

directionally differentiable at ẑ in direction d if the following limit exists

H ′′�̂z�d� �= lim
s→0+

2
H�̂z+sd�−H�̂z�−sH ′�̂z�d

s2
 

Clearly, the above limit always exists if d=0.
If in addition, T is a topological space, H �D×T →Y and ẑ �T →

D is a continuous function, then we say that H�·�t� is uniformly strictly Fréchet
differentiable at ẑ�t� for t∈T if, for each fixed t∈T , there exists a linear operator
H ′�̂z�t��t� �Z→Y such that, for all �>0, there exists �>0 such that, for all
t∈T ,

�H�z′�t�−H�z′′�t�−H ′�̂z�t��t��z′−z′′�����z′−z′′�
whenever z′ and z′′ satisfy �z′− ẑ�t��<� and �z′′− ẑ�t��<�.
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If H�·�t� is Fréchet differentiable at ẑ�t� and d �T →Z, is a continuous
function, then we say that H�·�t� is twice uniformly directionally differentiable at
ẑ�t� in direction d�t� for t∈T if, for all t∈T , the following limit exists

H ′′�̂z�t��t�d�t�� �= lim
s→0+

2
H�̂z�t�+sd�t��t�−H�̂z�t��t�−sH ′�̂z�t��t�d�t�

s2

and the convergence is uniform in t∈T , that is, for all �>0 there exists �>0
such that, for all t∈T and for all 0<s <�,∣∣∣∣H ′′�̂z�t��t�d�t��−2

H�̂z�t�+sd�t��t�−H�̂z�t��t�−sH ′�̂z�t��t�d�t�

s2

∣∣∣∣<� 

The notion of second-order admissible variation set used to express second-
order necessary conditions (defined first by Dubovitskii and Milyutin in [2]) is
described in the following way.
Let Z be a normed space, �⊂Z, z∈� , and d∈Z. A vector v∈Z is called a

second-order admissible variation of � at z in the direction d if there exists #>0
such that

z+sd+s2�v+u�∈� for all 0<s <#��u�<#�u∈Z 

The set of all such variations is denoted by V �z�d�� �. It follows directly from
the definition that V �z�d�� � is an open set. If � is also convex, then V �z�d�� � is
convex as well.
In order to derive meaningful second-order optimality conditions, it is required

to select directions d that guarantee the nonemptiness of V �z�d�� �. Such direc-
tions d∈Z are labeled as the critical directions of � at z and form a set called
critical direction cone to � at z. Throughout this paper, this cone will be denoted
by C�z�� �. It can be easily seen that C�z�� � is a convex cone if � is convex.
The following result offers a characterization of the critical cone (cf. [10]).

THEOREM 2.1. Let Z be a normed space, �⊂Z be a closed convex set with
nonempty interior. Let z∈� and d∈Z. Then d∈C�z�� � if and only if there exists
a constant M >0 such that

'�d�2�M�'�	�∗�' �� �−'�z�
 for all ' ∈Z∗ satisfying '�d�>0 

(2.1)

The condition formulated in Theorem 2.1 can be expressed equivalently in the fol-
lowing way: There exists a constant M >0 such that

−E�z�d�� ��'��
M�'�

4
for all ' ∈Z∗ satisfying '�d�>0�

where E�z�d�� ��'� �= '�d�2
4	'�z�−�∗�' �� �


for ' ∈Z∗ such that ' �∈N �z�� � Here �∗

denotes the support functional. �
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In the special case when Z is finite dimensional we can explicitely express the
support function ofV �z�d�� �. For, we need the following notations. If�=S⊂��,
z∈S and d∈�� then denote

d⊥ �=*' ∈�� � '�d�=0+� d> �=*' ∈�� � '�d�>0+�

and define from �� to the extended reals the function

����z�d�S��'� �=


liminf
,→'
,∈d>

E�z�d�S��,�� if ' ∈N �z�S�∩d⊥�

+�� otherwise 

One can see that ����z�d�S��·� is a positively homogeneous function and also
lower semicontinuous on��\*0+. Define the convex regularization co����z�d�S��·�
to be the largest lower semicontinuous convex function below����z�d�S��·�, that is,

co����z�d�S��'� = sup* -�'� � -���→ 	−���
 is convex and lsc�

-�,������z�d�S��,� ∀,∈��\*0+ + 

It results that co����z�d�S��·� is also sublinear. The following result offers an
evaluation of the support function of the set V �z�d�S� (cf. [9, Corollary 2.7]).

THEOREM 2.2. Let S be a closed convex set with nonempty interior and d∈
C�z�S�, and let ' ∈��. Then

�∗('∣∣V �z�d�S�
)=co����z�d�S��'� 

Consider now the special case when X=��T ����, where T =�T �/� is a
compact metric space, and S⊂�� is closed and convex set with nonempty interior.
Define the �⊂��T ���� as the set of continuous selections of S by

�=selC�S� �=*z∈��T ���� �z�t�∈S for t∈T+ 

Then � is closed convex set of ��T ����.
Regarding �=selC�S�, a thorough study of convex analysis concepts (normal

and tangent cones, support function, etc.) was developed in [6]. Results concerning
the second-order admissible variations, critical cone, and application to abstract
optimization were derived in [5]. A far simpler characterization of the set of critical
directions is offered by the following results from [5, Theorem 3.5, Lemmas 3.6,
3.8].

THEOREM 2.3. Let �=selC�S�, z∈� . Then d∈��T ���� is in the critical cone
C�z�� � if and only if there exists a constant M >0 such that, for all t∈T ,

'�d�t��2�M�'���∗�' �S�−'�z�t��� whenever ' ∈�� and '�d�t��>0 

(2.2)
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Since the dual space of ��T ���� consists of signed Borel measures due to
the Riesz representation theorem, then the characterization C�z�� � obtained via
Theorem 2.1 requires verifying (2.1) for measures ' . On the other hand, (2.2) needs
to be verified for ' ∈��. This fact renders Theorem 2.3 more valuable in applica-
tions. Another consequence of Theorem 2.3 is concerning the connection between
C�z�� � and the set-valued mapping t �→C�z�t��S�. From Theorem 2.1 applied to
� �=S (where t is kept fixed), it results, that d�t�∈C�z�t��S� is equivalent to
the fact that (2.2) holds for some constant Mt >0. Therefore, Theorem 2.3 can be
reformulated as follows:
A continuous function d belongs to C�z�� � if and only if

d�t�∈C�z�t��S� �t∈T�� (2.3)

and the corresponding constants Mt from (2.2) can be chosen to be uniformly
bounded.
When (2.2) is valid for some constant M and for all t∈T , then we say that (2.3)

holds uniformly in t∈T . The result analogous to Theorem 2.2 for the case of �=
selC�S� requires more involved notions. Let z∈selC�S� and d∈C�z�selC�S��.
Denote by d# �T →2�

�
the following set-valued function

d#�t�=* ' ∈�� �∃tn→ t� ∃'n→' with 'n∈d�tn�> ∀n∈� + 

Define

��z�d�S��t�'��=
liminf

�s�,�→�t�'�
,∈d�s�>

E�z�s��d�s��S��,�� if ' ∈N �z�t��S�∩d�t�⊥∩d#�t��

0� if ' ∈N �z�t��S�∩d�t�⊥\d#�t��
+�� otherwise�

(2.4)

Define the convex regularization co��z�d�S��·�·� to be the largest lower semi-
continuous function -�T ×��→ 	−���
 below ��z�d�S��·�·� such that, for
each t∈T , the function ' �→-�t�'� is convex on ��.
In the following result,we describe how the support functional ofV �z� d�selC�S��

can be evaluated in terms of co�.

THEOREM 2.4. Let T be a compact metric space, S⊂�� be closed and convex
with nonempty interior. Let z∈selC�S�, d∈C�z�selC�S�� and let 0 be a bounded
vector-valued Borel measure on T . Then

�∗(0∣∣V �z�d�selC�S��
)=∫

T
co��z�d�S�

(
t�

d0

d�0��t�
)

d�0��t��

where
d0

d�0��·� is the Radon–Nikodym derivative of 0 with respect to its total

variation �0�.
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3. Main Results

Let us first introduce the following notion. If ŵ � 	0�1
→�n is an arbitrary
function, then the #-tube around ŵ is the set

	#�ŵ� �=*�t�w�∈ 	0�1
×�n � �w−ŵ�t��<# for t∈ 	0�1
+ 

Also, for w0∈�n, B#�w0� stands for the open ball centered at w0 of radius #.
Let #>0 be given. Let �, and b be functions defined on B#

(
x̂�0�

)×B#

(
x̂�1�

)
to � and �s, respectively. Let f be defined on 	#�x̂�×�m to �n and k be defined
on 	#�x̂� to��. Let S be given convex subsets of�� with nonempty interior and U
be an arbitrary subset of �m. The optimal control problem considered here is the
problem ��� introduced in Section 1.
The Hamiltonian function associated to ��� is


�t�x�u�p� �=pT f �t�x�u�

Aprocess �x̂�û� is called regular for ��� if the following conditions are satisfied:

�R1� The functions ��b and are strictly Fréchet differentiable at the point
�x̂�0��x̂�1��.

�R2� The function f is continuous on 	#�x̂�×U and, for almost all t∈ 	0�1
, the
map

�s�x� �→f �s�x�û�t��
(
�s�x�∈	#�x̂�

)
(3.1)

is strictly Fréchet differentiable at �t�x̂�t�� �1-uniformly for t∈ 	0�1
, and,
there exists a number �0 >0 such that, for almost all t∈ 	0�1
 and u∈U ,
the map

�s�x� �→f �s�x�u� (3.2)

is Lipschitz on B�0
�t�x̂�t��∩	#�x̂�. Furthermore, it is also assumed that f̂ ,

f̂t, and f̂x are integrable functions.
�R3� The function k defined on 	#�x̂� is continuous, and, for all t∈ 	0�1
, the

map

�s�x� �→k�s�x�
(
�s�x�∈	#�x̂�

)
(3.3)

is strictly Fréchet differentiable at the point �t�x̂�t�� uniformly in t∈ 	0�1
.
Furthermore, it is also assumed that k̂t and k̂x are continuous functions.

�R4� The sets R⊂�r , S⊂�s are closed convex and have nonempty interior.

A pair ��6��x� is said to be critical for ��� at �x̂�û� if �6 � 	0�1
→� is Lipschitz
continuous and �x � 	0�1
→�n is absolutely continuous, furthermore,

�C1� �̂x0
�x�0�+ �̂x1

�x�1��0;
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�C2� b̂x0
�x�0�+ b̂x1

�x�1�=0;
�C3� �6�0�=�6�1�=0;
�C4� �̇x�t�= f̂x�t��x�t�+ f̂t�t��6�t�+ f̂ �t��̇6�t� holds for a.e. t∈ 	0�1
.
�C5� k̂t�t��6�t�+ k̂x�t��x�t�∈C�̂k�t��S� uniformly in t∈ 	0�1
, that is, there

exists a constant M >0 such that, for all t∈ 	0�1
,[
'T �̂kt�t��6�t�+ k̂x�t��x�t��

]2
�M �' �(�∗�' �S�−'T k̂�t�

)
whenever ' ∈�� satisfies 'T �̂kt�t��6�t�+ k̂x�t���x�t�>0.

A critical pair ��6��x� is called regular for ��� at �x̂�û� if

�R5� the functions � and b are twice directionally differentiable at �x̂�0��x̂�1�� in
the direction ��x�0���x�1��;

�R6� for all u∈U , the map in (3.1) is twice directionally differentiable at �t�x̂�t��
in direction ��6�t���x�t�� �1-uniformly in t∈ 	0�1
;

�R7� for all t∈ 	0�1
, the map (3.3) is twice directionally differentiable at �t�x̂�t��
in direction ��6�t���x�t�� uniformly in t∈ 	0�1
.

The following result offers first and second-order conditions for strong local
optimality in ���. Its proof makes use of all the results of Sections 2.

THEOREM 3.1. Let �x̂�û� be a regular strong local minimum point for the prob-
lem ���. Then, for every regular critical pair ��6��x�, there exist constants 7∈
�, 8=�81�   �8s�∈�s, an absolutely continuous function p �	0�1
→�n, and
a Borel regular vector-valued measure 0=�01�   �0�� not all zero, such that
7�0,

d0

d�0��t�∈N �̂k�t��S�t�� for 0− a.e. t∈ 	0�1
� (3.4)

ṗT �t�=−
̂x

(
t�p�t�+

∫

t�1


k̂T
x �s�d0�s�

)
for a.e. t∈ 	0�1
� (3.5)

−pT �0�=7�̂x0
+8T b̂x0

+
(∫

	0�1

k̂T

x �t�d0�t�
)T

� (3.6)

pT �1�=7�̂x1
+8T b̂x1

� (3.7)

min
u∈U



(
t�x̂�t��u�p�t�+

∫

t�1


k̂T
x �s�d0�s�

)
= 
̂

(
t�p�t�+

∫

t�1


k̂T
x �s�d0�s�

)
for a.e. t∈ 	0�1
�

(3.8)
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and (
7�̂′′+8T b̂′′)��x�0���x�1��+

∫
	0�1


k̂′′�t��x�t��d0�t�

(3.9)

+
∫ 1

0

̂ ′′

(
t�p�t�+

∫

t�1


k̂T
x �s�d0�s����6�t���x�t�

)
dt

+
∫ 1

0
2�̇6�t�
̂ ′

(
t�p�t�+

∫

t�1


k̂T
x �s�d0�s����6�t���x�t�

)
dt

�2
∫

	0�1

co��̂k�̂kt�6+ k̂x�x�S�

(
t�

d0

d�0��t�
)
d�0��t��

where 
 ′ and 
 ′′ denote, respectively, the first-order Fréchet derivative and the
second-order directional derivative of 
 with respect to the variables �t�x�.

Proof. The proof of the above theorem is based on a modification of the time
transformation trick due to Dubovitskii and Milyutin.
Let �x̂�û� be a strong local minimum for ���. Denote by T the set of full measure

defined as

T �=*t∈�0�1� � ˙̂x�t�=f �t�x̂�t��û�t��� û�t�∈U�

and the conditions in �R2� hold at t+

and choose dense subsets *t1�t2�   + of T and *u1�u2�   + of U . denote by Mik

the Lipschitz constant of the function �t�x� �→f �t�x�ui� on B�0
�tk�x̂�tk��∩	#�x̂�

and define the constants cik by cik �=�f �tk�x̂�tk��ui��+Mik for i�k∈�.
By Lemma 2.3 of [12], to this choice of the t′is and of the cik

′s, there correspond
a sequence of pairwise disjoint intervals Ik=�<k�<

′
k
⊂ 	0�1
 whose total length

is 1/2, functions t̂�v̂ � 	0�1
→� defined by

t̂�<� �=
∫ <

0
v̂�s�ds� where v̂�<� �=

{
2 if < �⋃�

k=1Ik�

0 if < ∈⋃�
k=1Ik�

�< ∈ 	0�1
��

and satisfies t̂�<�= tk on Ik. Furthermore, there exists a family of pairwise disjoint
measurable sets *Aik � i�k∈�+ such that the sets A1k�A2k�   form a partition
of Ik for all k, and, for any open set O⊂ Ik, we have meas�O∩Aik�>0 for all

i�k∈�, and
�∑

i=1

�∑
k=1

cikmeas�Aik�<� 

Define the functions ŷ � 	0�1
→�n and ŵ � 	0�1
→U by

ŷ�<� �= x̂�̂t�<��� ŵ�<� �=
{

û�̂t�<�� if < �⋃�
k=1Ik�

ui if < ∈Aik 
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Now consider the following auxilliary control problem.

���� Minimize ��y�0��y�1�� subject to

ṫ�<�=v�<���a.e. < ∈ 	0�1
�� (3.10)

ẏ�<�=v�<�f �t�<��y�<��ŵ�<����a.e. < ∈ 	0�1
�� (3.11)

t�0�=0� t�1�=1� (3.12)

b�y�0��y�1��=0� (3.13)

k�t�<��y�<��∈S� �< ∈ 	0�1
�� (3.14)

v�<��0� �a.e. < ∈ 	0�1
�� (3.15)

where t and y are absolutely continuous functions and v is an essentially bounded
measurable function over 	0�1
.
The Hamiltonian corresponding to ���� is

H�<�t�y�v�r�q�/� �=vqT f �t�y�ŵ�<��+rv−/v 

Similarly to [3], one can show that if �x̂�û� is a strong local minimum for ��� then
�̂t�ŷ�v̂� is a strong local minimum for ����. In particular, �̂t�ŷ�v̂� is a weak local
minimum for ����.
For z=�t�y�∈�n+1, v∈�, and < ∈ 	0�1
, set

fff �<�z�v� �=
(

v
vf �t�y�ŵ�<��

)
� kkk�<�z� �=k�t�y��




�<�z�v�'�/� �='Tfff �<�z�v�−/v 

By using the above defined functions, it is readily seen that ���� is in the form
of ���, where f is replaced by fff . Hence, in order to apply Theorem 4.1 of [11] to
����, we need to verify that �̂t�ŷ�v̂� is a regular solution for ����. Furthermore,
we need to construct the regular critical directions for ���� in terms of those for
���. The fruits of the investigation conducted in [12] is stated below.

PROPOSITION 3.1. If �x̂�û� is a regular solution for problem ���, then �̂t�ŷ� v̂�
is also a regular solution for ����.

PROPOSITION 3.2. Let ��6��x� be a regular critical direction for ���. Then
��t��x��v� defined by

�t�<� �=�6�̂t�<��� �y�<� �=�x�̂t�<��� �v�<� �= v̂�<��̇6�̂t�<��� �< ∈ 	0�1
� 

(3.16)

is a regular critical direction for the problem ����, i.e, ��z��v� is a regular and
critical direction for ���, where �z�=��t��y�.
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Now, let ��6��x� be a regular critical direction for ��� and define ��t��y��v�
by (3.16). Then, by Proposition 3.2, ��t��y��v� is a regular critical direction for
����. Hence, by Theorem 4.1 in [11] applied to ����, there exist 7∈�, 888=
�8�B0�B1�∈�s+2, an absolutely continuous functions ' =� �r�q� � 	0�1
→
�×�n, an integrable function /�	0�1
→�, and a Borel regular vector valued
measure000 not all zero such that 7�0 and

/�<��0 and /�<�̂v�<�=0 for a.e. < ∈ 	0�1
� (3.17)

d000

d�000��<�∈N �̂kkk�<��S� for 0− a.e. < ∈ 	0�1
� (3.18)

'̇ T �<�=−
̂

 z

(
<�'�<�+

∫

<�1


k̂kk
T

z �C�d000�C��/�<�
)

for a.e. < ∈ 	0�1
�

(3.19)

−'T �0�=7�̂z0
+8T b̂z0

+
(∫

	0�1

k̂kk

T

z �<�d000�<�
)T

� (3.20)

'T �1�=7�̂z1
+8T b̂z1

� (3.21)


̂

v

(
<�'�<�+

∫

<�1


k̂kk
T

z �C�d000�C��/�<�
)
=0 for a.e. < ∈ 	0�1
� (3.22)

and (
7�̂′′+8T b̂′′)��z�0���z�1��+

∫
	0�1


k̂kk
′′
�<��z�<��d000�<�

+
∫ 1

0

̂



′′(
<�'�<�+

∫

<�1


k̂kk
T

z �C�d000�C��/�<���z�<���v�<�
)
d<

�2
∫

	0�1

co��̂kkk�̂kkkz�z�S�

(
<�

d000

d�000��<�
)
d�000��<�� (3.23)

where


 ′′ denotes the second-order strong directional derivative of


 with respect
to the variable �z�v�.
In order to be able to translate condition (3.18) into (3.4), we need the following

result from [12].
Set

<̂�s� �=
{
min*C ∈ 	0�1
 � t̂�C�=s+ if s <1�
1 if s=1 

Then, <̂ is strictly increasing and hence, is differentiable at almost all s. Moreover,
t̂�<�s��=s, for all s∈ 	0�1
.
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PROPOSITION 3.3. Let 000 be a finite Borel measure in
(
��	0�1
����

)∗
and let

0 be defined by

0�Q�=000
(
<̂�Q�

)+∑
tk∈Q

000�Ik�� (3.24)

where Q is a Borel subset of 	0�1
. Then, for any bounded Borel measurable func-
tion -�	0�1
→��,∫

	0�1

-�̂t�<��d000�<�=

∫
	0�1


-�t�d0�t� (3.25)

Furthermore, if S is closed convex subset of �� with nonempty interior and K �
	0�1
→S is a continuous function, then

d000

d�000��<�∈N
(
K�̂t�<��

∣∣S) for000 a.e. < ∈ 	0�1


if and only if

d0

�d0��t�∈N
(
K�t�

∣∣S) for 0-a.e. t∈ 	0�1


and, for all k∈� and for all Borel sets W ⊂ Īk

000�W �∈N
(
K�tk�

∣∣S� 

Applying the above proposition with K�t� �=k�t�x̂�t��, we can see that (3.18)
implies (3.4) if the measure 0 is defined by (3.24).
Now we continue or analysis with the adjoint equation (3.19) which is equiva-

lent to

ṙ �<� = −v̂�<�f T
t

(̂
t�<��ŷ�<��ŵ�<�

)(
q�<�+

∫
�<�1


kT
x �̂t�C��ŷ�C��d000�C�

)
(3.26)

q̇�<� = −v̂�<�f T
x

(̂
t�<��ŷ�<��ŵ�<�

)(
q�<�+

∫
�<�1


kT
x �̂t�C��ŷ�C��d000�C�

)
(3.27)

Observe that q and r are constant on Ik for all k. Set, for t∈ 	0�1
,

p�t� �=q�<̂�t��� G�t� �=r�<̂�t�� (3.28)

Then these functions are absolutely continuous and, for a.e. t∈ 	0�1
,

ṗ�t�= q̇�<̂�t��

v̂�<̂�t��
� Ġ�t�= ṙ �<̂�t��

v̂�<̂�t��
 (3.29)
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(for the proof, see the argument followed in [3]).
Observe that, for t∈ 	0�1
, the formula (3.25) applied to the function -�s� �=

H�t�1
�s�K�s�x̂�s�� and the identity H�t�1
�̂t�C��=H�<̂�t��1
�C� yield that∫
�<̂�t��1


KT �̂t�C��ŷ�C��d000�C�=
∫

�t�1

KT �s�x̂�s��d0�s�

for K=kt and K=kx. Thus, substituting < = <̂�t� into (3.26) and (3.27) and
using (3.28), (3.29), we get that

Ġ�t�=−f̂ T
t �t�

(
p�t�+

∫
�t�1


k̂T
x �s�d0�s�

)
ṗ�t�=−f̂ T

x �t�
(
p�t�+

∫
�t�1


k̂T
x �s�d0�s�

)
hold for a.e. t∈ 	0�1
. Now, observe that the latter equation is equivalent to (3.5).
The conditions (3.20) and (3.21) directly yield (again by using (3.25)) that

(3.6) and (3.7) are satisfied. For the function G, we obtain the following endpoint
conditions

−G�0�=B0+
∫ 1

0
k̂T

t �t�d0�t�� G�1�=B1 

By equation (3.22), we have, for a.e. < ∈ 	0�1
,

f T
(̂
t�<��ŷ�<��ŵ�<�

)(
q�<�+

∫
�<�1


kT
x �̂t�C��ŷ�C��d000�C�

)
+
(
r�<�+

∫
�<�1


kT
t �̂t�C��ŷ�C��d000�C�

)
=/�<� (3.30)

Now we distinguish two cases. By the second condition in (3.17), /�<�=0 for
a.e. < ∈C. Therefore, with the substitution <̂�t�, it follows from the above equation
that

f̂ T �t�
(
p�t�+

∫
�t�1


k̂T
x �s�d0�s�

)
+
(
G�t�+

∫
�t�1


k̂T
t �s�d0�s�

)
=0 (3.31)

for a.e. t∈ 	0�1
.
Let now k∈� be fixed. Then, by the first condition in (3.17), /�<��0 for a.e.

< ∈ Ik. Therefore, it follows from (3.30) that

f T
(̂
t�<��ŷ�<��ŵ�<�

)(
q�<�+

∫
�<�1


kT
x �̂t�C��ŷ�C��d000�C�

)
+
(
r�<�+

∫
�<�1


kT
t �̂t�C��ŷ�C��d000�C�

)
�0 (3.32)

for a.e. < ∈ Ik. Since, for all i, Aik is intersecting any open subset of Ik at a set of
positive measure, therefore, for each i, there is a sequence Cn∈Aik tending to <k
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such that (3.32) holds at < =Cn. Putting < =Cn into (3.32) and upon taking the limit,
we arrive at

f T
(
tk�x̂�tk��ui

)(
p�tk�+

∫
�tk�1
̂

kT
x �s�d0�s�

)
+
(
G�tk�+

∫
�tk�1
̂

kT
t �s�d0�s�

)
�0�

(3.33)

wherewe utilized that t̂�Cn�= tk, ŷ�Cn�= tk, ŵ�Cn�=ui hold for all n. Furthermore,

lim
n→�

∫
�Cn�1


KT �̂t�C��ŷ�C��d000�C�=
∫

�<k�1

KT �̂t�C��ŷ�C��d000�C�

=
∫

�tk�1

K̂T �s�d0�s� 

Since f is continuous in u and *u1�u2�   + is dense in U , (3.33) yields that

f T
(
tk�x̂�tk��u

)(
p�tk�+

∫
�tk�1


k̂T
x �s�d0�s�

)
+
(
G�tk�+

∫
�tk�1


k̂T
t �s�d0�s�

)
�0

(3.34)

is satisfied for all u∈U and for all k∈�. A similar argument (that uses the con-
tinuity of f �·�·�u�) and the fact that *t1�t2�   + is dense in �0�1�) shows that (3.34)
holds when tk is replaced by any t∈ 	0�1�. The resulting inequality combined with
(3.31) yields that, for a.e. t∈ 	0�1
 and for all u∈U ,

f T
(
t�x̂�t��u

)(
p�t�+

∫
�t�1


k̂T
x �s�d0�s�

)
� f̂ T �t�

(
p�t�+

∫
�t�1


k̂T
x �s�d0�s�

)
 

Thus, we have proved that (3.8) is satisfied.
The fact that some of the multipliers 7�888�p�0 has to be different from zero

was established in [12].
The last part of the proof consists of analyzing (3.23) in order to obtain (3.9).

Note that the first two terms in (3.9) are direct translations of the corresponding
terms in (3.23) where (3.25) was employed. For the third term, observe that


̂


′′
�<�z�v�'�G��z��v�='Tf̂ff

′′
�<��z��v�

and
f̂ff

′′
�<��z�<���v�<���

=
(

0
v̂�<�f̂ ′′�̂t�<���t�<���y�<��+2�v�<�

[
f̂t �̂t�<���t�<�+ f̂x�̂t�<���y�<�

]) 

Whence, by (3.25), the third term of (3.23) transforms to the third and fourth terms
of (3.9).
In order to compare the last terms of these inequalities, we shall need the

following result.
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LEMMA 1. Using the notations introduced earlier, we have

�∗
(
000
∣∣∣V (̂

kkk�̂kkkt�t+k̂kkx�y
∣∣selC�S�

))
��∗

(
0
∣∣∣V (̂

k�̂kt�6+ k̂x�x
∣∣selC�S�

))
�

(3.35)

where �∗ stands for the support function.

Proof. Let �0 � 	0�1
→�� be an arbitrary second-order variation in V
(̂
k�̂kt�6+

k̂x�x
∣∣selC�S�

)
. Then, there exists #̄>0 such that

k̂�t�+s
[̂
kt�t��6�t�+ k̂x�t��x�t�

]+s2	�0�t�+�
∈S (3.36)

for all t∈ 	0�1
, for ���<#̄, and for all s∈�0�#̄�.
Now define B0�<� �=�0�̂t�<�� for all < ∈ 	0�1
. By substituting t= t̂�<� into

(3.36), it results that B0 belongs to V
(̂
kkk�̂kkkt�t+k̂kkx�y

∣∣selC�S�
)
 

Furthermore, by (3.25), we obtain∫ 1

0
�T
0 �t�d0�t�=

∫ 1

0
BT
0 �<�d000�<� 

Therefore, the conclusion of the Lemma is proved. �

From [6, Theorem 3.10], we have the terms on the right hand side of equations
(3.23) and (3.9) are, respectively, equal to the left and right hand side of inequality
(3.35). Hence, (3.23) implies that (3.9) holds.
Therefore the proof of theorem 3.1 is now completed. �
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